Glossary.hyper

Glossary.hyper

] COLLABORATORS
TITLE :
Glossary.hyper
ACTION NAME DATE SIGNATURE
WRITTEN BY August 26, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Glossary.hyper iii

Contents

1 Glossary.hyper 1
1.1 Glossary (Wed Jul 15 15:32:26 1992) o i 1
1.2 Glossary : abbreviations e e e 5
1.3 Glossary : active logical window e e e e 5
1.4 Glossary : address Operatorot e e e e e e e e e 6
1.5 Glossary : aliases e e e e e 6
1.6 Glossary : alias StriNG o e e e e e e e e e e e e 6
1.7 Glossary : AREXX POt o e e e 6
1.8 Glossary : AREXX SCTIPLS . . . o v v v o o e 7
1.9 Glossary : auto OUtpuL SNAP e e e e e e e e e e e e e 7
1.10 Glossary : autodefault L. e 7
1.11 Glossary : autoscalable e e e e e 8
1.12 Glossary : bOX o L e e 8
1.13 Glossary : breakpointnode e e e 9
1.14 Glossary : breakpoints o i e e e e e e e e e e e e e e 9
1.15 Glossary : code L e e 9
1.16 Glossary : commandline L e e e 10
1.17 Glossary : conditional breakpoints e e e e 10
1.18 Glossary : conditional eXpressions e e e 10
1.19 Glossary : CONSTANTS o o v o et e e e e e e e e e e 10
1.20 Glossary : cOntents OPETAtOr v v v v v v v et e 11
1.21 Glossary : crashnode e e e 11
1.22 Glossary : currentdebugnode e 11
1.23 Glossary : current list L. L e e 11
1.24 Glossary : current listindicator e e e 12
1.25 Glossary : current logical window L e e e e e 12
1.26 Glossary : currenttag list L e 12
1.27 Glossary : debugnodes L e e e 13
1.28 Glossary : debugtasks L e e e e e 13
1.29 Glossary : double quotes L e 13

Glossary.hyper iv
1.30 Glossary : dummy debug task e 13
1.31 Glossary : @XPression v v v v v v v e 13
1.32 Glossary : fancy mode e 14
1.33 Glossary : FD-files e e e e e 14
1.34 Glossary : feedback mode L 14
1.35 Glossary : fullscreen debugger e e e e e e 14
1.36 Glossary : function definitions e e 14
1.37 Glossary : function MmONitor L L e e e e e e e e e e e e e e 15
1.38 Glossary : functions L e e 15
1.39 Glossary : group OPErator v v v v v v v e 15
1.40 Glossary : history buffer e 16
1.41 Glossary : holdmode e e e 16
1.42 Glossary : home positionot e e e 16
1.43 Glossary : hotKey o e e e e e e 16
1.44 Glossary :interrupt key L 17
1.45 Glossary : IntuiTick o o L e e e e 17
1.46 Glossary : key attacements e e e e e e e e 17
1.47 Glossary : Key code o e e e e e e e 17
1.48 Glossary : led monitor e 18
1.49 Glossary : inenumber Operator i vt e e e e e e e e e e e e e e e e e e 18
1.50 Glossary : list L e e 18
1.51 Glossary : listelement e e e e e e e e e e e 18
1.52 Glossary : lisSt Operator o i e e e e e 18
1.53 Glossary : logfile e e 19
1.54 Glossary : logical windowo e e e e 19
1.55 Glossary : LW . . . o o o o e e e 19
1.56 Glossary : machinelanguage sCripts oL e e e e e 20
1.57 GloSSary : MACTO . . . v v v v et e 20
1.58 Glossary : masterbox e 20
1.59 Glossary : ML-SCIIPES o o o o e e e e e e e e e e e e e e e e e e e 20
1.60 Glossary : MMU tree e e 21
1.61 Glossary : monitor fUunCtions o 0 e e e e e e e e e e e e 21
1.62 Glossary : MORE checking e 21
1.63 GlOSSAry : NAMES .« . v v v v v e 21
1.64 Glossary : nofancy mode L 22
1.65 Glossary : normal breakpoints L e e e e e 22
1.66 Glossary :outputlog e 22
1.67 Glossary : pause K&y e e e 22
1.68 Glossary : Pen e e e e 22

Glossary.hyper v
1.69 Glossary : physical window 22
1.70 Glossary : PortPrint e e e e e e e e 23
1.71 Glossary : PowerVisordevice e e e 23
1.72 Glossary : POWerVisor SCreen v i i e e e e e e e e e e e e e 23
1.73 Glossary : POwerVisor scripts o e e e e 23
1.74 Glossary : PowerVisor startup file e e 24
1.75 Glossary : PowerVisor window 24
1.76 Glossary : prefix OPerators o v v i i e e e e e e e e e e e e e e e e e e 24
1.77 Glossary : private breakpoints L e e 24
1.78 Glossary : profiler breakpoint e e e e e 25
1.79 Glossary : prompt e e e 25
1.80 Glossary : PVDevice e e e e e e e 25
1.81 Glossary : PVSDfile 25
1.82 Glossary : PW o e 26
1.83 Glossary : qualifier e e 26
1.84 Glossary : qUOLE OPETALOT« . v v v v v i e 26
1.85 Glossary : qUOLES o i e e e e e e e e e e e 26
1.86 Glossary : real-top Windows L e e e e e e e e e e 27
1.87 Glossary : recursive aliases e e 27
1.88 Glossary : resident breakpointso e e e e e e e 28
1.89 Glossary : residentcommands Lo e 28
1.90 Glossary : resident ML-SCTIPES o 0t i i e e e e e e e e e e e e e e e 28
1.91 Glossary : SCIIPLS o o e e e 28
1.92 Glossary : single qUOLES o ot e e e e e e e e e e e 28
1.93 Glossary : singlestepmode e 29
1.94 Glossary : size bar e e e e e e e e e 29
1.95 Glossary : SNapping e e e 29
1.96 Glossary : special OPErator v v v v e i e e e e e e e e e e e e 29
1.97 Glossary : special variables e 29
1.98 Glossary : stack checking L e e 30
1.99 Glossary : stack faillevel e 30
1.100Glossary : standard logical window L e e e 30
1.101Glossary : startup file e 31
1.102Glossary : String eXpansion« .ottt e e e e e e e e e e e e e e 31
1.103Glossary : String pOINLErst e e e e e e 31
1.104Glossary @ StrNGS« o Lo e e e e e e e e e 31
1.105Glossary : structure definition Lo e 32
1.106Glossary : Strong qQUOLE v v vt i e e e e e e e e e e e e e e e e 32
1.107Glossary : symbols e 32

Glossary.hyper vi
TI0BGIOSSAry : tag . . . o v o o e e e e e e e e e e 33
1.109Glossary : tag file L L e e e 33
L110Glossary : tag List o o o e e e e e e e e e e e e e 33
1.111Glossary : task accounting L e e e 33
1.112Glossary : Task Control Block (or TCB) e 34
1.113Glossary : task list o . e e e e e e e e 34
L.114Glossary : TCB o e e e e e 34
1.115Glossary : templates e e e e e e e e 34
1.116Glossary : temporary breakpoint L L 34
1.117Glossary : timeout breakpoints L L e e e e e e e e e e 35
1.118Glossary : top-visible windows L. e 35
1.119Glossary : variables L 35

Glossary.hyper

1/36

Chapter 1

Glossary.hyper

1.1 Glossary (Wed Jul 15 15:32:26 1992)

Contents:

abbreviations

active logical window

address operator
aliases

alias string
ARexx port

ARexx scripts
auto output snap
autodefault
autoscalable

box

breakpoint node
breakpoints

code

commandline

conditional breakpoints

conditional expressions

constants

Glossary.hyper 2/36

contents operator
crash node

current debug node
current list

current list indicator
current logical window
current tag list
debug nodes

debug tasks

double quotes

dummy debug task
expression

fancy mode

FD-files

feedback mode
fullscreen debugger
function definitions
function monitor
functions

group operator
history buffer

hold mode

home position

hot key

interrupt key
IntuiTick

key attacements

key code

led monitor

Glossary.hyper 3/36

linenumber operator
list

list element

list operator

log file

logical window

LW

machinelanguage scripts
macro

masterbox
ML-scripts

MMU tree

monitor functions
MORE checking

names

nofancy mode

normal breakpoints
output log

pause key

pen

physical window
PortPrint
PowerVisor device
PowerVisor screen
PowerVisor scripts
PowerVisor startup file
PowerVisor window

prefix operators

Glossary.hyper

4/36

private breakpoints
profiler breakpoint
prompt

PVDevice

PVSD file

PW

qualifier

quote operator
quotes

real-top windows
recursive aliases
resident breakpoints
resident commands
resident ML-scripts
scripts

single quotes
singlestep mode
size bar

snapping

special operator
special variables
stack checking

stack fail level

standard logical window

startup file
string expansion
string pointers
strings

structure definition

Glossary.hyper 5/36

strong quote

symbols

tag

tag file

tag list

task accounting

Task Control Block (or TCRB)
task list

TCB

templates

temporary breakpoint
timeout breakpoints
top-visible windows
variables

Various:
Back to main contents

1.2 Glossary : abbreviations

PowerVisor allows you to abbreviate several things. You can abbreviate
command names and names for list elements

Tutor chapters : Expresions Getting Started

1.3 Glossary : active logical window

The active logical window is the logical window where you can <
scroll
with the keyboard. You can see if a logical window is active by looking
at the titlebar. A full (blue in AmigaDOS 2.0) titlebar indicates that
the logical window is active. Note that the active logical window is NOT
the same as the current logical window.
Starting at V1.10, the active logical window is also used for pending
input (see the Screens and windows chapter for more info)

Commands : scroll active
Tutor chapters : Screens and windows
Related terminology

Glossary.hyper 6/36

current logical window

logical window

1.4 Glossary : address operator

The address operator (’'&’) can be used to ask the address of an <«
element
in the current list. You can only use this operator for the exec ,
graf and intb lists. An address operator always precedes a
list operator

Tutor chapters : Expressions
Related terminology

contents operator

list operator

1.5 Glossary : aliases

An alias in its simpliest form is another name for a command. <
PowerVisor
aliases are a bit more powerful than normal aliases. You can actually
construct whole new commands with them

Commands : alias unalias
Tutor chapters : 1Installing PowerVisor
Related terminology

alias string

recursive aliases

1.6 Glossary : alias string

The alias string is the string that is used instead of the <>

commandline
when an alias command is entered. It is in fact the definition of the
alias
Commands : alias unalias
Tutor chapters : 1Installing PowerVisor
Related terminology
aliases

1.7 Glossary : ARexx port

Glossary.hyper

7/36

The ARexx port is used by ARexx to send commands to.
of
the PowerVisor ARexx port is REXX_POWERVISOR

Commands : rx

Tutor chapters : Scripts

Related terminology
ARexx scripts

1.8 Glossary : ARexx scripts

The name

An ARexx script is a ASCII script file containing ARexx <2

commands .
ARexx 1s a versatile script language for the Amiga. With ARexx you
can interface PowerVisor to any other program supporting ARexx or
you can write powerful scripts making life easier for you and other
users of PowerVisor. ARexx scripts must begin with a comment

(/% */)
Commands : rx
Tutor chapters : Scripts
Related terminology
PowerVisor scripts
scripts

ML-scripts

ARexx port

1.9 Glossary : auto output snhap

This feature is an optional setting for logical windows. When

auto
output snap’ is on, the logical window will automatically scroll to
the place where output appears. ’"auto output snap’ is on by default

for the "Main’ logical window. You can change this behaviour with
the setflags or prefs commands

Commands : setflags prefs
Tutor chapters : Screens and windows
Related terminology : logical windows

MORE checking

home position

1.10 Glossary : autodefault

4

<_>

Glossary.hyper 8/36

Autodefault is a method provided to make life easier for the <+
user.

Normally when PowerVisor parses some sequence of characters, several
steps occur. In one of these steps PowerVisor tests if the sequence
of characters could be an abbreviation for a name of a ’"list element’
in the current list.
But some commands are only useful for specific list elements. For
example : the freeze command to freeze a task is only useful for
tasks. Therefor ’freeze’ uses ’'autodefault’ to the ’'task’ list. This
means that the parsing of the sequence of characters is not done for
the current list but for the task list. In practice this means that
you can simply use the name of the task even if the task 1list is
not the current list. Many commands use this feature (see the

Command Reference chapter if you want to know if a certain command
uses ’"autodefault’). Some functions also use ’'autodefault’

Related terminology
list element

current list

1.11 Glossary : autoscalable

When a logical window is autoscalable for one or both <

directions
(vertical or horizontal) the visible size will always be equal to
the real size (in that direction) (see ’'logical window’ for more info).

This means that when you change the visible size (by opening or closing
another logical window or by dragging the size bar) the logical window
will be cleared and the real size will be recomputed. The ’"Main’ logical
window is NOT autoscalable by default

Commands : fit colrow
Tutor chapters : Screens and windows
Related terminology

logical window

box

1.12 Glossary : box

A box is used by the physical window to manage the space for <+
logical
windows. A box has a parent (unless it is the root box for the
physical window) and two children (unless it is a leaf of the box
tree). A box with no children (a leaf box) corresponds with a
logical window.

Tutor chapters : Screens and windows
Related terminology
logical window

Glossary.hyper 9/36

physical window

masterbox

1.13 Glossary : breakpoint node

A breakpoint node is the internal data structure used by <
PowerVisor
to hold information about a breakpoint. Each breakpoint has its
own breakpoint node. You can use info for a debug node to see
a list of all breakpoint nodes

Commands : info debug
Tutor chapters : Debugging
Related terminology

breakpoints

debug nodes

1.14 Glossary : breakpoints

A breakpoint is a location in memory where a debug node should <=
stop
(sometimes depending on some condition). They are implemented using
"ILLEGAL’ instructions (so don’t use them in shared memory)

Commands : Dbreak trace debug
Tutor chapters : Debugging
Related terminology
debug nodes
normal breakpoints
timeout breakpoints
conditional breakpoints
temporary breakpoints profile <
breakpoints

resident breakpoints

private breakpoints

1.15 Glossary : code

See
key code

Glossary.hyper 10/ 36

1.16 Glossary : commandline

The commandline of PowerVisor is a stringgadget. This means <
that vyou
can use all stringgadget editing facilities supported by the
operating system. You can also use some extra facilities provided
by PowerVisor like the ’"history buffer’.
By default the commandline is 400 bytes long but you may decrease
or increase this value with the prefs command

Commands : prefs
Tutor chapters : Getting Started
Related terminology

history buffer

1.17 Glossary : conditional breakpoints

Conditional breakpoints only break when a certain condition (¢
expression)
is true
Commands : Dbreak trace debug
Tutor chapters : Debugging
Related terminology
breakpoints
debug node

1.18 Glossary : conditional expressions

Using the 1if() function you can make conditional expressions <=
like in

Tutor chapters : Expressions
Related terminology
expression

1.19 Glossary : constants

A constant is just like a PowerVisor variable. The only <
difference
is that you can’t change the value (obvious :-)
"version’ is the only constant in the current version of PowerVisor

Commands : vars
Tutor chapters : Expressions
Related terminology

variables

Glossary.hyper

11/36

functions

special variables

1.20 Glossary : contents operator

The contents operator (’*’) can be used to read from memory
locations.
You can use it in expressions or before the assignment operator

Tutor chapters : Expressions
Related terminology
address operator

1.21 Glossary : crash node

A crash node (in the crsh 1list) corresponds with a crashed task.
When a task crashes and PowerVisor traps the crash, PowerVisor will
create a crash node and halt the task. This crash node contains
some extra information about the crash

1.22 Glossary : current debug node

The current debug node is the debug node that you are currently
debugging. All trace and breakpoint commands use the current debug
node. You can have more than one debug node in memory at the same

time
Commands : with duse
Tutor chapters : Debugging
Related terminology : debug node

1.23 Glossary : current list

When PowerVisor parses some sequence of characters, several
steps occur. In one of these steps PowerVisor tests if the sequence
of characters could be an abbreviation for a name of a ’"list element’
in a certain list. This list is the current list. In the bottom
left corner of the PowerVisor window you can see the name of the
current list. If you want to change the current list to some other
list, Jjust type the name of the other 1list (task , lock ,
wins , ...). Note that some commands do not use the current list for
parsing sequences of characters (see ’'autodefault’)

Commands : task lock wins
Tutor chapters : List Reference
Related terminology

<o

Glossary.hyper 12/36

list
list element
autodefault

current list indicator

1.24 Glossary : current list indicator

The current list indicator is located in the left-bottom corner <
of
the 'Main’ physical window (the PowerVisor window). It displays
the name of the current list (’Task’, ...).
Right from the current list indicator is the prompt

Related terminology
current list

prompt

1.25 Glossary : current logical window

The current logical window is the logical window that receives <>
all
output from most commands. This is ’'Main’ by default. Note that the
current logical window is NOT the same as the active logical window

Commands : current on
Tutor chapters : Screens and windows
Related terminology

active logical window

logical window

1.26 Glossary : current tag list

The current tag list is the tag list that is used by all the
tag commands. There are sixteen possible tag lists (0..15)

Commands : tg usetag
Tutor chapters : Looking at things
Related terminology

tag list

tag

Glossary.hyper 13/36

1.27 Glossary : debug nodes

See
debug tasks

1.28 Glossary : debug tasks

(or debug nodes) A debug task is a task you are debugging. When it
is called a debug task, we are talking about the real task. When

it is called a debug node (which is logically the same) we are also
talking about the task in most cases, but sometimes the term debug
node is used for the internal structure needed by PowerVisor to
debug the task (this last meaning is actually more exact than the
first one). All debug nodes are in the dbug 1list

Commands : dbug debug
Tutor chapters : Debugging

1.29 Glossary : double quotes

See
quotes

1.30 Glossary : dummy debug task

With a dummy debug task you can make symbols without having to <
create
a real debug task. This makes it more easy to disassemble programs.
You can’t trace or set breakpoints with a dummy debug task, but you
can create and show symbols

Commands : debug symbol
Tutor chapters : Debugging

Related terminology
debug nodes

1.31 Glossary : expression

A sequence of characters corresponding with some algebraic or other
operations on integers

Tutor chapters : Expressions

Glossary.hyper 14 /36

1.32 Glossary : fancy mode

Fancy mode is another name for two-bitplane mode. PowerVisor is
in fancy mode when the PowerVisor screen uses two bitplanes (default).

Otherwise PowerVisor is in ’‘nofancy’ mode

Commands : mode
Tutor chapters : Screens and windows
Related terminology

nofancy mode

1.33 Glossary : FD-files

A fd-file (function definition file) contains definitions for <

the
functions defined in a shared library (you can find these files
on the Extras 1.3 disk). PowerVisor uses these files for several

(to make the disassembly more readable when you are

purposes
command also uses FD-files).

debugging for example, the addfunc
All loaded FD-files are in the fdfi 1list

Commands : loadfd unloafd fdfi

Related terminology
function definitions

1.34 Glossary : feedback mode

When feedback mode is on (default) PowerVisor will first print each
command on the PowerVisor window before executing it. That way you
have an easy way to know which command caused which output

Commands : mode
Tutor chapters : Getting Started

1.35 Glossary : fullscreen debugger

Normally debugging in PowerVisor is commandline based. Using the
fdebug alias (or the "db’ script) you can install a fullscreen
This fullscreen debugger uses the ’'Debug’ logical window

debugger.

for output
Commands : debug fdebug dwin
Tutor chapters : Debugging

1.36 Glossary : function definitions

Glossary.hyper 15/36

A function definition is a definition for a library function
(the name, registers, ...). Function definitions are part of
an FD-file

Commands : loadfd libinfo libfunc
Related terminology
FD-files

1.37 Glossary : function monitor

The function monitor is the device in PowerVisor that monitors
library functions (monitor functions)

Commands : addfunc
Related terminology
monitor functions

1.38 Glossary : functions

A function is a routine you may include in expressions. It has
some arguments (or none) and most often a result. Note that PowerVisor
always expects brackets after the function name even if there are no
arguments (like in C). Functions live in the same list as variables.
This is why you can’t have a variable with the same name as a function

Commands : vars
Tutor chapters : Expressions
Related terminology

variables

constants

special variables

1.39 Glossary : group operator

The group operator ("{’ ... "}’) can be used to group several <
commands
together. You can do this because you want to execute several commands
at once or because you are interested in the return code of the last
executed command in the list. Group operators can be used as stand
alone command or in expressions. The commands in the group are seperated
by ;.
The group operator is also useful if you want to create recursive
aliases

Tutor chapters : Expressions
Related terminology
recursive aliases

Glossary.hyper 16 /36

1.40 Glossary : history buffer

To make editing easier PowerVisor supports a history buffer. <
Using
the arrow up/down keys you can move in this history buffer and make
changes to previous commands.
You can change the maximum number of lines in the history buffer with
the prefs command

Commands : prefs
Tutor chapters : Getting Started
Related terminology

commandline

1.41 Glossary : hold mode

When PowerVisor is in hold mode, the screens and windows of <«
PowerVisor
are all closed. This is useful to preserve memory. You can reopen
PowerVisor with the hot key

Commands : hold
Related terminology
hot key

1.42 Glossary : home position

The home position for a logical window depends on whether the <
logical
window is a top-visible window or a real-top window

Tutor chapters : Screens and windows
Related terminology
top-visible windows

real-top windows

1.43 Glossary : hot key

The PowerVisor hot key is the key combination used to bring the
PowerVisor screen to the front. Normally the hot key is
<right-shift>+<right-alt>+’7?’ but you can redefine it to any other
key you want with the prefs command

Commands : prefs
Tutor chapters : Getting Started
Related terminology

hold mode

Glossary.hyper 17 /36

interrupt key

pause key

1.44 Glossary : interrupt key

The interrupt key (<esc> by default) can be used to interrupt a
PowerVisor command. You can use any key you want for the interrupt
key with the prefs command

Commands : prefs
Tutor chapters : 1Installing PowerVisor
Related terminology

hot key

pause key

1.45 Glossary : IntuiTick

An IntuiTick is one tenth of a second. It is used by the refresh
command to measure the refresh rate

Commands : refresh

1.46 Glossary : key attacements

See
macro

1.47 Glossary : key code

A key code is some quantity used by the Amiga operating system <=
to
distinguish between different keys on the keyboard. PowerVisor uses
key codes in several cases (in conjunction with qualifiers) in order
to install some commands on keys or other things

Commands : attach prefs
Tutor chapters : 1Installing PowerVisor
Related terminology

code

qualifier

Glossary.hyper 18/36

1.48 Glossary : led monitor

This is a (older) name for the function monitor

Related terminology
function monitor

1.49 Glossary : linenumber operator

The linenumber operator (’#’) is useful when debugging. Directly after
the operator follows a linenumber in the currently loaded source. The
result is the address in memory for that linenumber

Tutor chapters : Expressions Debugging
Releated terminology : ’'special operator’

1.50 Glossary : list

A list contains some list elements (structures or nodes). You <

can look
at a list with the 1list command. You can ask more information
about a list element in a list with the info command.
For example the task 1list contains all processes and tasks. The list
is called ’'task’ and each list element in the list is either a process

or a task.

Commands : 1list info
Tutor chapters : List Reference Looking at things

Related terminology
list element

current list

1.51 Glossary : list element

See
list

1.52 Glossary : list operator

The list operator (’:’) 1is a binary operator with both <+

arguments for
the operator optional. You can use it to search some item in a list

Tutor chapters : Expressions List Reference
Related terminology
list

Glossary.hyper 19/36

list element

address operator

1.53 Glossary : log file

A log file is a file used to store all output appearing in a <+
logical
window. You can only have one log file at a time and only for one
logical window

Commands : 1log to

Tutor chapters : Screens and windows

Related terminology : logical windows
output log

1.54 Glossary : logical window

A logical window is the primary output device used by <
PowerVisor. It

corresponds with a visible rectangle on a physical window (or
Intuition window). You can have more than one logical window on
each physical window. A logical window has an internal size and
a visible size. The internal size is the number of columns and
rows that PowerVisor really remembers for that logical window.
The visible size is the part of the logical window that you can see.
Using commands or keys you can scroll the visible logical window
region in the real logical window region.
The most important logical window is the ’'Main’ logical window. This
logical window is always open and receives all output (by default)
for most commands. All logical windows can be found in the 1lwin

list
Commands : openlw closelw rwin dwin awin owin Xwin
Tutor chapters : Screens and windows

Related terminology
physical window

LW

standard logical window

1.55 Glossary : LW

An abbreviation for
logical window
Related terminology
logical window

Glossary.hyper 20/36

1.56 Glossary : machinelanguage scripts

See
ML-scripts

1.57 Glossary : macro

A macro is another (and better) name for a key attachement. I hope to
remove the term ’'key attachement’ from all documentation and use
"macro’ instead. A macro is a command that is attached to a key.

When you press that key the command is executed.

Commands : attach remattach
Tutor chapters : 1Installing PowerVisor
Related terminology : key attachement

1.58 Glossary : masterbox

The masterbox is the box that is always present in a physical <+
window.
It is the root of the box tree. The masterbox is the only box that
can have no children while containing no logical window

Tutor chapters : Screens and windows
Related terminology
box

logical windows physical windows

1.59 Glossary : ML-scripts

ML-scripts (or machinelanguage scripts) are scripts written in <&
an
external language (like C or machinelanguage). They are useful
for more specialized tasks. Some examples can be found in the
"s/pv’ subdirectory

Commands : script pvcall
Tutor chapters : Scripts The wizard corner
Related terminology

ARexx scripts

PowerVisor scripts

scripts

Glossary.hyper 21/36

1.60 Glossary : MMU tree

The MMU tree (or Memory Management Unit tree) is used by the 68851,
68030 or 68040 for memory management. On the Amiga the MMU is only
marginally used. In future PowerVisor may be able to protect memory
using the MMU. At this moment you can list the MMU tables and the
MMU registers

Commands : mmutree mmuregs specregs
Tutor chapters : Looking at things

1.61 Glossary : monitor functions

Monitor functions are library functions you are monitoring with the
addfunc command. Using this command provides a powerful way to
debug some programs

Commands : addfunc

1.62 Glossary : MORE checking

MORE checking is an optional setting for logical windows. When
MORE checking is on, PowerVisor will wait for a key press after
a full page of output has appeared (a full page is measured by
the real size of the logical window and not by the visible size).
MORE checking is on by default for the ’'Main’ logical window

Commands : mode
Tutor chapters : Screens and windows
Related terminology
auto output snap
logical windows

home position

1.63 Glossary : names

Names are actually strings but without the single quotes. There <
is
no other significant difference. Note however, that names are NOT
always interpreted in the same way as a normal string (with single
quotes) . For example, you cannot use single quotes when you want
the name to use as a variable

Tutor chapters : Expressions
Related terminology

strings

single quotes

Glossary.hyper 22/36

1.64 Glossary : nofancy mode

See
fancy mode

1.65 Glossary : normal breakpoints

See
breakpoints

1.66 Glossary : output log

See
log file

1.67 Glossary : pause key

The pause key (’<right-alt>+<help> by default) can be used to <«
pause
the output of a command

Commands : prefs
Tutor chapters : 1Installing PowerVisor
Related terminology

hot key

interrupt key

1.68 Glossary : pen

A pen is a graphical object. A pen in PowerVisor has a name and a
value. For all graphic operations PowerVisor uses a pen. This means
that you can customize all colors you see on the PowerVisor screen
(and not only with RGB values)

Commands : prefs
Tutor chapters : 1Installing PowerVisor Screens and windows

1.69 Glossary : physical window

A physical window directly corresponds with a normal Intuition
window. A physical window can contain one or more logical windows.
The visible size for logical windows is managed by the physical
windows using the ’'Box’ concept. The most important physical

Glossary.hyper 23/36

window is the ’'Main’ physical window. This physical window contains

the "Main’ logical window. All physical windows can be found in
the pwin 1list

Commands : openpw closepw
Tutor chapters : Screens and windows
Related terminology

logical window

box

PW

1.70 Glossary : PortPrint

PowerVisor supports a PortPrint feature. This means that you can
print debug information (using the powervisor.library) on the
PowerVisor screen. This is useful for tasks for example because
they normally can’t easily print output. The name PortPrint is
derived from the way this feature works. A message is send to

the PowerVisor message port containing the output string (or

some other data because PowerVisor supports more types of output).
Note that the output of the portprint commands appears on the
"PPrint’ logical window if this window is open

Commands : owin

1.71 Glossary : PowerVisor device

See
PVDevice

1.72 Glossary : PowerVisor screen

This is the screen where all PowerVisor windows (physical <=
windows)
live. It is possible that this screen does not exist. This happens
when you have opened PowerVisor on the WorkBench screen or on any
other screen in the system

Commands : screen
Tutor chapters : Screens and windows
Related terminology : physical windows

PowerVisor window

1.73 Glossary : PowerVisor scripts

Glossary.hyper 24 /36

PowerVisor scripts are simple script containing only sequential
PowerVisor commands. They are useful for installing things. Some
examples scripts can be found in the ’'s/pv’ subdirectory. The
PowerVisor startup script (s/PowerVisor-startup) is also a
PowerVisor script. For more complex scripts you should use

ARexx
Commands : script
Tutor chapters : Scripts

Related terminology
ARexx scripts

scripts

ML-scripts

1.74 Glossary : PowerVisor startup file

See
startup file

1.75 Glossary : PowerVisor window

The PowerVisor window is another name for the ’"Main’ physical <+
window.
This physical window contains at least the ’"Main’ logical window for
standard output

Tutor chapters : Screens and windows
Related terminology
PowerVisor screen
physical windows
logical windows

1.76 Glossary : prefix operators

Prefix operators are operators you can put in front off the commandline
before you execute it (press enter). These prefix operators have
some effect on the output of the command or on other things

Tutor chapters : Screens and windows Technical information

1.77 Glossary : private breakpoints

Glossary.hyper 25/36

Private breakpoints are used by PowerVisor to skip an <«
instruction or
for other purposes

Commands : Dbreak debug trace
Tutor chapters : Debugging
Related terminology

debug nodes

breakpoints

1.78 Glossary : profiler breakpoint

A profiler breakpoint never breaks, but only increments a <
counter
everytime the breakpoint is passed. This is useful to gather usage
statistics

Commands : Dbreak trace debug
Tutor chapters : Debugging
Related terminology

breakpoints

debug nodes

1.79 Glossary : prompt

The prompt is the >’ symbol right from the current list <=
indicator.
It indicates the stringgadget or commandline where you can type
PowerVisor commands

Related terminology
current list indicator

1.80 Glossary : PVDevice

(or PowerVisor device) A PVDevice is a data structure used by some
commands. With a PVDevice you can open any device in the system and
send commands to it. This is useful to test selfmade devices or

to learn about other devices

Commands : opendev devcmd

1.81 Glossary : PVSD file

Glossary.hyper

26 /36

A pvsd file (PowerVisor Structure Definition file) contains

some
structures. 'pvsd’ files are made by the ’'MStruct’ utility

Commands : addstruct interprete
Tutor chapters : Looking at things
Related terminology

structure definition

1.82 Glossary : PW

An abbreviation for
physical window
Related terminology
physical window

1.83 Glossary : qualifier

H

A qualifier is used together with a key code to distinguish <>

between
different key presses. A qualifier says something about some special
keys pressed at the same time with the key (shift, alt, ...)

Commands : attach prefs
Tutor chapters : 1Installing PowerVisor
Related terminology

key code

1.84 Glossary : quote operator

The quote operator (or backslash ’\’) can be used to put
integers,
characters or other strings in one way or another in a string or
string pointer. The quote operator is actually quiet powerful

Tutor chapters : Expressions
Related terminology
strings

string pointers

quotes

1.85 Glossary : quotes

Glossary.hyper 27 /36

Quotes are used to define a string or string pointer. A single <
quote
is used for real strings and a double quote is used for string pointers.
For commands expecting a string there is no difference between using
the single quote or the double quote. But if a command expects an
integer as an argument there is a difference. A double quoted string (or
string pointer) is in fact a pointer to that string while a single
quoted string will be parsed according to several steps (variable, list
element, symbol, function, ...)

Tutor chapters : Expressions
Related terminology
strong quote

strings

string pointers

1.86 Glossary : real-top windows

A real-top window is a logical window with the home position <>
set

to location (0,0). This means that when the logical window is cleared

the current cursor position is automatically set to that position and

the logical window is scrolled to the top-left visible corner in

the real region of the logical window. The ’'Refresh’ and ’Debug’

logical windows are real-top windows by default. See

"top-visible windows’ for the other way to set the home position

Tutor chapters : Screens and windows
Related terminology
top-visible windows

logical window

home position

1.87 Glossary : recursive aliases

Using the group operator you can make recursive aliases. This <
is
because alias expansion is done again in a new group
Tutor chapters : 1Installing PowerVisor
Related terminology

aliases

group operator

Glossary.hyper 28/36

1.88 Glossary : resident breakpoints

A resident breakpoint is a breakpoint that you can put in your <=
program
even before PowerVisor is running. You put it in your program before
compiling or assembling it. Resident breakpoints (like all breakpoints)
are simply ’'ILLEGAL’ instructions

Commands : debug
Tutor chapters : Debugging
Related terminology

debug nodes

breakpoints

1.89 Glossary : resident commands

See
resident ML-scripts

1.90 Glossary : resident ML-scripts

(or resident commands) For faster execution you can make ML- <
scripts
resident. Note that they must be reentrant

Commands : resident unresident
Tutor chapters : Scripts
Related terminology

resident commands

ML-scripts

1.91 Glossary : scripts

See
ARexx scripts
4
PowerVisor scripts
or
ML-scripts

1.92 Glossary : single quotes

See
quotes

Glossary.hyper 29/36

1.93 Glossary : singlestep mode

When you are tracing a program (a debug node), PowerVisor can <
use
two modes : ’singlestep mode’ or ’'execute mode’. In singlestep mode

each instruction is executed step by step. After each instruction
an exception handler is called and some action is taken (you can
control this action with the trace command). In execute mode
the program is running at full speed. The program only stops when
a breakpoint or other exception occurs

Commands : trace break debug
Tutor chapters : Debugging
Related terminology

debug nodes

1.94 Glossary : size bar

The size bar is the (mostly horizontal) bar between two logical windows.
You can use this bar to resize the logical windows

Tutor chapters : Screens and windows
Related terminology : logical windows

1.95 Glossary : snapping

Snapping is the process of moving the mouse to a position in a logical
window and clicking on the word under the mouse pointer. The word
will be copied to the stringgadget

Tutor chapters : Getting Started

1.96 Glossary : special operator

The special operator (’@’) is useful when debugging. It returns the
value of the registername directly after the operator character

Tutor chapters : Expressions Debugging
Releated terminology : ’linenumber operator’

1.97 Glossary : special variables

Special variables are a bit special :-) Special variables <
behave
like normal variables in that you can assign values to them. But
when you assign something to a special variable, a certain routine
is called. The ’'mode’ variable is an example of a special variable.

Glossary.hyper 30/36

When you change something in the mode variable PowerVisor will
automatically adapt all internal settings to the new settings provided
in the assignment

Commands : vars mode
Tutor chapters : Looking at things
Related terminology

variables

constants

functions

1.98 Glossary : stack checking

PowerVisor has two stack checkers (not counting the internal <+
stack
checker for PowerVisor). These stack checkers check if a certain
task (with the stack command) or all tasks (with the account
command) have enough room left on the stack. The minimum amount of room
allowed on the stack is called the ’'stack fail level’

Commands : stack account
Related terminology
stack fail level

1.99 Glossary : stack fail level

The stack fail level is the minimum size of the stack that <
PowerVisor
allows before it will halt a task. It is used both by the account
and the stack commands

Commands : stack account prefs
Related terminology
stack checking

1.100 Glossary : standard logical window

A standard logical window is a logical window with a predefined
meaning for PowerVisor. In the current version there are seven
standard logical windows : Main, Extra, Debug, Refresh, Rexx, PPrint
and Source

Commands : rwin awin dwin xwin owin swin
Tutor chapters : Screens and windows
Related terminology

logical window

Glossary.hyper 31/36

1.101 Glossary : startup file

(or ’"PowerVisor startup file’) The startup file or s/PowerVisor <
—startup
file is equivalent to the startup-sequence file. It is a PowerVisor
script containing initialization commands. It is executed when
PowerVisor starts

Related terminology
scripts

PowerVisor scripts

1.102 Glossary : string expansion

String expansion is sometimes used to refer to the process of <+
parsing
a string (a sequence of characters) while assigning special meanings
to some characters (like the quote operator and strong quote operator)

Tutor chapters : Expressions
Related terminology
strings

quote operator

strong quote

1.103 Glossary : string pointers

A string pointer (defined with double quotes) is a pointer to
a sequence of characters. It is actually an integer is and is
used as such by all commands expecting integers as an argument.
This means that arithmetic on string pointers is perfectly valid
and is equivalent to C pointer arithmetic

Tutor chapters : Expressions
Related terminology
strings

quotes

1.104 Glossary : strings

A string (defined with or without single quotes) 1s a sequence <
of
characters. Normally strings are surrounded by single quotes (or
without quotes) but if a command expects a string as an argument
double quotes will do as well. Note that this is NOT the case for

Glossary.hyper 32/36

a command expecting an integer as an argument. Strings (with
single quotes) will be parsed according to some steps (variable,

function, symbol, list element, ...) while a string pointer
(with double quotes) simply corresponds to the pointer to the
string

Tutor chapters : Expressions

Related terminology
string pointers

quotes

1.105 Glossary : structure definition

A structure definition corresponds with a structure (like in C <=
or
assembler) or a record (like in Pascal). With the external utility
"MStruct’ you can make structure definitions to be used by
PowerVisor. A structure definition contains a list of names (for
the structure fields) and their corresponding types (APTR, BPTR,
BSTR, CSTR, BYTE, WORD, LONG, ...). You can interprete a range
of memory as a structure or you can use tags to permanently define
a region of memory as a structure

Commands : addstruct interprete
Tutor chapters : Looking at things
Related terminology

pvsd file

tag

1.106 Glossary : strong quote

The strong quote ' -’ (or <alt>+8 on the keyboard) is normally <
not
used very often. Using the strong quotes you can easily put all
characters in a string expect one. This is the character directly
after the string quote. This character is used to end the
strong quote region

Tutor chapters : Expressions
Related terminology
strings

string pointers

quotes

1.107 Glossary : symbols

Glossary.hyper 33/36

Symbols are names for labels and addresses used in programs. Most
assemblers and compilers can output symbols in the program hunks.
PowerVisor supports these symbols when you are debugging programs

Commands : symbol debug
Tutor chapters : Debugging

1.108 Glossary : tag

A tag is a definition for a region of memory.

There are 16 tag <
lists.

Each tag list can contain an arbitrary number of tags.
a pointer to the start of a memory block,
(Byte/Ascii, Code, Structure, ...)

One tag contains
a size in bytes and a type

Commands : addtag

remtag view
Tutor chapters : Looking at things
Related terminology
tag list
tag file

current tag list

1.109 Glossary : tag file

A tag file contains some tags saved with the savetags command <

Commands : savetags loadtags
Tutor chapters : Looking at things
Related terminology

tag

tag list

1.110 Glossary : tag list

See
tag

1.111 Glossary : task accounting

When you enable task accounting (with the account command) PowerVisor
counts the number of task switches for each task. This gives a rough

indication of the cpu time a task uses. You can see this accounting
information in the task 1list

Glossary.hyper

34 /36
Commands : account list
1.112 Glossary : Task Control Block (or TCB)
The Task Control Block is another name for the task structure.
Related terminolgy
TCB
task list
1.113 Glossary : task list
The task 1list contains all processes and tasks currently in <
the
system.
Commands : task list
Tutor chapters : List Reference
Related terminology
list

1.114 Glossary : TCB

See
Task Control Block (or TCRB)

1.115 Glossary : templates

A template is a syntaxical description of a command. If you have the

online help files installed (PowerVisor-help and PowerVisor-ctrl)
you can get command templates by using ’?’

as the first argument (just
like CLI commands)

1.116 Glossary : temporary breakpoint

A temporary breakpoint only breaks once.
has done

its work it will automatically disappear

After the breakpoint <

Commands : Dbreak trace
Tutor chapters Debugging
Related terminology

breakpoints

debug

Glossary.hyper 35/36

debug nodes

1.117 Glossary : timeout breakpoints

A timeout breakpoint only breaks after a specified number of <
times

Commands : Dbreak trace debug
Tutor chapters : Debugging
Related terminology

breakpoints

debug nodes

1.118 Glossary : top-visible windows

A top-visible logical window is a logical window with the home <
position
set to the top-left position of the bottom-left visible region of the
real region of the logical window. This means that when such a window
is cleared, the current cursor position is set to that position and
the logical window is scrolled to the bottom visible region.
The ’"Main’ logical window is top-visible by default. See
"real-top windows’ for the other way to set the home position

Tutor chapters : Screens and windows
Related terminology

real-top windows

logical windows

home position

1.119 Glossary : variables

A variable can be used to remember some value. PowerVisor only <
has
integer type variables (although a variable may point to a string,
this is in fact a C string). There is no limitation (except memory)
on the length of the variable name. A variable name must start with
a letter or an underscore but may contain digits in the rest of the
name.
Note that wvariables, constants, special variables and functions all
live in the same internal list

Commands : vars remvar assign
Tutor chapters : Expressions
Related terminology

constants

Glossary.hyper 36/36

functions

special variables

	Glossary.hyper
	Glossary (Wed Jul 15 15:32:26 1992)
	Glossary : abbreviations
	Glossary : active logical window
	Glossary : address operator
	Glossary : aliases
	Glossary : alias string
	Glossary : ARexx port
	Glossary : ARexx scripts
	Glossary : auto output snap
	Glossary : autodefault
	Glossary : autoscalable
	Glossary : box
	Glossary : breakpoint node
	Glossary : breakpoints
	Glossary : code
	Glossary : commandline
	Glossary : conditional breakpoints
	Glossary : conditional expressions
	Glossary : constants
	Glossary : contents operator
	Glossary : crash node
	Glossary : current debug node
	Glossary : current list
	Glossary : current list indicator
	Glossary : current logical window
	Glossary : current tag list
	Glossary : debug nodes
	Glossary : debug tasks
	Glossary : double quotes
	Glossary : dummy debug task
	Glossary : expression
	Glossary : fancy mode
	Glossary : FD-files
	Glossary : feedback mode
	Glossary : fullscreen debugger
	Glossary : function definitions
	Glossary : function monitor
	Glossary : functions
	Glossary : group operator
	Glossary : history buffer
	Glossary : hold mode
	Glossary : home position
	Glossary : hot key
	Glossary : interrupt key
	Glossary : IntuiTick
	Glossary : key attacements
	Glossary : key code
	Glossary : led monitor
	Glossary : linenumber operator
	Glossary : list
	Glossary : list element
	Glossary : list operator
	Glossary : log file
	Glossary : logical window
	Glossary : LW
	Glossary : machinelanguage scripts
	Glossary : macro
	Glossary : masterbox
	Glossary : ML-scripts
	Glossary : MMU tree
	Glossary : monitor functions
	Glossary : MORE checking
	Glossary : names
	Glossary : nofancy mode
	Glossary : normal breakpoints
	Glossary : output log
	Glossary : pause key
	Glossary : pen
	Glossary : physical window
	Glossary : PortPrint
	Glossary : PowerVisor device
	Glossary : PowerVisor screen
	Glossary : PowerVisor scripts
	Glossary : PowerVisor startup file
	Glossary : PowerVisor window
	Glossary : prefix operators
	Glossary : private breakpoints
	Glossary : profiler breakpoint
	Glossary : prompt
	Glossary : PVDevice
	Glossary : PVSD file
	Glossary : PW
	Glossary : qualifier
	Glossary : quote operator
	Glossary : quotes
	Glossary : real-top windows
	Glossary : recursive aliases
	Glossary : resident breakpoints
	Glossary : resident commands
	Glossary : resident ML-scripts
	Glossary : scripts
	Glossary : single quotes
	Glossary : singlestep mode
	Glossary : size bar
	Glossary : snapping
	Glossary : special operator
	Glossary : special variables
	Glossary : stack checking
	Glossary : stack fail level
	Glossary : standard logical window
	Glossary : startup file
	Glossary : string expansion
	Glossary : string pointers
	Glossary : strings
	Glossary : structure definition
	Glossary : strong quote
	Glossary : symbols
	Glossary : tag
	Glossary : tag file
	Glossary : tag list
	Glossary : task accounting
	Glossary : Task Control Block (or TCB)
	Glossary : task list
	Glossary : TCB
	Glossary : templates
	Glossary : temporary breakpoint
	Glossary : timeout breakpoints
	Glossary : top-visible windows
	Glossary : variables

